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LEITER TO THE EDITOR 

Analytic singularities in dispersive wave phenomena based 
on topological singularities of dispersion relations 

G Dangelmayr 
Institute for Information Sciences, University of Tubingen, Tubingen, Federal Republic 
of Germany 

Received 25 March 1982 

Abdract. The connection between topological singularities of dispersion relations and 
analytic singularities with respect to frequency of spectral densities and wavefunctions in 
dispersive media due to time harmonic sources is demonstrated. The topological sing- 
ularities are discussed within the framework of imperfect bifurcation theory, regarding 
the frequency as a distinguished bifurcation parameter and the wavenumbers as bifurcation 
variables, and using a recently obtained classification of topological singularities up to 
codimension four which is given in terms of a list of normal forms. To each normal form 
corresponds an analytic singularity, governed by characteristic exponents which are tabu- 
lated. 

Dispersive wave phenomena are, in general, governed by a dispersion relation 
(Whitham 1974, Lighthill 1979) 

B(w, k) = 0, (1) 
where w is the frequency, k = (kl, . . . , k,) are wavenumbers and B is a smooth function 
of w and k which will be called the 'dispersion function'. There are two types of 
integrals associated with B, namely 

U ( @ )  = dk S[B(w, k)]laB(w, &)/awl (2a) 
and 

U ( [ ,  U )  = I dk e-ik'f/B(w -io, k), (26) 
where S in (2a) is Dirac's delta function. The integral (2a) occurs in crystal vibrations 
with u ( w )  being the crystal's spectral density. If (1) yields a unique solution w = &(k), 
(2a) reduces to u(w)=IdkS[w-&(k)] which is of standard form (Wannier 1959), 
but the representation (2a) is more general than the latter expression. The function 
U ( &  w )  given by (26) is, apart from a factor exp(iot), the response at the space point 
6 = (el, . . . , en) in a dispersive medium due to an oscillating point source of frequency 
w at the origin. Equation (26) can be written (Lighthill 1979) as a surface integral, 

where Si is that part of the surface B(w, k) = 0 in k space on which (e - VkB)aB/aw < 0. 
A similar expression holds for (2a). 
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The purpose of this paper is to demonstrate the connection between the analytic 
singularities with respect to w of the integrals (2a, b) and the generic topological 
singularities of the underlying dispersion function B. We do this by deriving a canonical 
expression for an integral of the form (2a, b) from the canonical form for its integrands 
in the neighbourhood of a large class of topological singularities, as classified by 
Dangelmayr (1982). The behaviour of the integrals with respect to frequency is 
governed by characteristic exponents, which we also find. 

We say that B has a topological singularity at (00 ,  ko) if B(oo, ko) = 0 and 
lVkB(wo, ko)l = 0. It is important to note that the topological singularities originate 
in equations, and consequently cannot be described generically as singularities of 
smooth functions in the sense of elementary catastrophe theory (Poston and Stewart 
1978), as is commonly done for non-dispersive waves (Berry 1976, 1982, Dangelmayr 
and Guttinger 1982). The point is that aB(oo, ko)/aw can be zero, giving rise to 
multivalued and non-smooth behaviour of w as a function of k. To classify singularities 
of dispersion relations one has to use a framework which is rather different from 
catastrophe theory, namely, the theory of imperfect bifurcations in the sense of 
Golubitsky and Schaeffer (1979). The idea is to consider (1)  as a bifurcation equation 
for the wavenumbers k ('bifurcation variables') and to regard the frequency w as a 
distinguished bifurcation parameter. For fixed U,  equation (1)  defines a manifold S ,  
of codimension one in k space. Suppose that for some w = wo, S ,  exhibits a singularity 
at ko; in other words, the topological type of S,  changes when w passes through its 
critical value wo. The standard singularity-theoretic approach to studying the 
behaviour of the solutions of (1) in a neighbourhood of (wo, ko) is to choose a coordinate 
system in which B takes a canonical (normal) form. Putting 3 = w - W O ,  k'= k - ko 
and 6 ( 3 ,  i )  = B(w,  k) so that 6(0,0) = 0, imperfect bifurcation theory allows for 
transformations of the form 

E(&, L) = T ( X ,  A )G(X ,  A )  (4) 

where x = (xl, . . . , x , )  = x ( k :  G), A = A (3), det(dxi/dj)  > 0, dA/d3 > 0 and the function 
T(x,  A )  is non-zero. Observe that A does not depend on k: which emphasises the role 
of the frequency as distinguished parameter, consistent with the integrals in (2) where 
the wavenumbers are integrated out. As in catastrophe theory, the class of transforma- 
tions given by (4) induces equivalence classes (orbits) in the space of all functions 
G(x, A )  or 6 ( 3 ,  l)  vanishing at the origin. In the framework of imperfect bifurcation 
theory in the sense of Golubitsky and Schaeffer (1979), one associates with any 
function G(x, A )  a codimension cod G and a universal unfolding F(x,  A, (U) satisfying 
F(x,  A, 0) = G(x, A )  where (U = (a1, . . . , (U,) is a set of parameters and 1 = cod G. The 
role of F is similar to the universal unfoldings of catastrophe theory and will not be 
exploited here further. For a presentation of imperfect bifurcation theory from a 
physical point of view see e.g. Stewart (1981). We call any (locally smooth) function 
G(x, A )  satisfying G(0,O) = 0 and V,G(O, 0) = 0 a singularity (which should not be 
confused with singularities in the catastrophe-theoretic sense). A classification of 
singularities up to codimension four has been obtained recently by Dangelmayr (1982) 
in terms of a list of normal forms. Putting i = (xs+l, . . . , x n ) ,  x = (2, i ) ,  and defining 
the non-degenerate quadratic form, 
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any normal form with codimension less than or equal to four can be written as 

G ( ~ , A ) = G o ( ~ ,  A ) + Q p , q ( ? ) ,  (6 )  
where Go is the degenerate part of G and s = 0, 1,2 is the corank of G(x, 0) in the 
standard catastrophe-theoretic sense (Poston and Stewart 1978). The normal forms 
Go, together with their unfolding terms, are listed in table 1, where x' = X or x' = (X, Y )  
according to s = 1 or s = 2, respectively. In table 1 we have used Arnold's (1974) 
notation for G(x, 0), viewed as a singularity in the sense of catastrophe theory, to 
which we have added a second index to denote the difference between cod G and the 
(catastrophe-theoretic) codimension of G(x, 0). Observe that table 1 contains some 
normal forms of the form Go = A * f ( i )  with f being a standard Thom-Arnold singular- 
ity. In this case the catastrophe-theoretic codimension of f coincides with cod Go, 
though in more degenerate cases these two types of codimension may be different (cf 
Dangelmayr 1982). The normal forms 0 4 . 2 ,  A2,4 and A3,3 have codimension five, but 
one unfolding term is associated with a modal parameter (indicated by the asterisk) 
so that their topological codimension (cf Golubitsky and Schaeffer 1979) is, in fact, four. 

Any topological singularity of the dispersion function B at (WO,  ko) gives rise to 
an analytic singularity of the integrals (2) at wo. In a neighbourhood of (wo, ko) the 
dispersion function can be transformed into a normal form G(x,A) (equation (4)) 
with Go being one of the normal forms of table 1. More degenerate singularities 
(codimension 2 1) may occur in B due to a dependence of B on additional parameters 
(e.g. pressure, temperature, external fields in the case of crystal vibrations and spatial 
position or parameters characterising the medium in the case of dispersive waves). 
The dominant singular behaviour of u ( w )  resp U(& w )  near w = wo is then governed 
by canonical integrals, 

I l ( A ) =  dxlaG(x, h)/ahlS(G(~, A ) )  (7a) I 
resp 

Table 1. Normal forms Go up to topological codimension four. Here, E = i1 and r = 
p + q  = n - s. 

Type GO Restriction Unfoldings CodG P I  P 2  

A1.m-1 A m  1 s m  s5 A ' ( 1  S j S m  - 2 )  m - 1  tmr-1  m ( & - 1 )  
1 r  1 r  
m 2  m 2  

3 s m ~ 6  X ' ( 1 s j s m - 2 )  m - 2  -+--I -+--1 

rm 
2(m - 1 )  

1 A m - ~ , ~  X"' +EXA 3 c m s 5  l , A , X ' ( 2 S j S m - 2 )  m - 1  - - 1  -- 
mr+2  

2(m - 1 )  
' 4 2 . 2  X 3 + & A 2  - 1 ,  X ,  XA 3 r - 4  r -$  
D,,,+I,O A + & X m + X Y 2  m = 3 , 4  Y , X ' ( l s j ~ m - l )  m $ ( r - l +  i ( r - l + l / m )  

0 4 . 2  x3  + EXY2 C'+E 2 0  L X ,  y2 ,  A ;  X A  S* $r i r - $  

A2,4 X 3  +2cX2A + E M '  c2  # E I ,  X ,  A,  x2;  X'A 5* $1 5 - 2  
A3.3 X 4 + 2 c X 2 A + ~ A 2  c 2 # s  1 ,  X .  A, XA ; X2A 5* r - 1  r - $  

l / m )  

+ cXA + YA 
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where S i  is defined analogously to Si. (The function T(x, A )  and the determinant 
of the transformation k + x  have been ignored in equations (7), because their effect 
on the dominant analytic singularity of U near W O  is just multiplication of (7) by a 
positive constant.) The behaviour of Il and I2 near A = 0 is characterised by exponents 
p1 and p 2 ,  respectively, i.e. 

Ii - IA I p i  asA+O, i = l , 2 .  (8) 
The values of p1 and p z  for each normal form are given in table 1 (obtained from 
simple scaling arguments). Accurate expressions for Zl for the non-modal singularities 
of table 1 are presented below. Finally, we give results for I2 but confine ourselves 
to n = 1 and to the non-modal singularities of table 1. 

The most convenient way of computing Zl(A)  is to insert the Fourier integral 
representation of the delta function into (7a) ,  leaving us with oscillatory integrals 
which can be easily evaluated for the non-modal singularities of table 1.  The resulting 
Fourier inversion integral is then computed by making extensive use of Gelfand and 
Shilov's (1964) tables of Fourier transforms of generalised functions. In the case of 
the normal form the following expressions for Il are obtained: 

(rPI2/r( p/2))8(-A)lA I p / 2 - 1  for 4 = 0, (9a) 

(d / ' / r (4 /2 ) )e (~  ) I A  lql2-l for p = 0, (9b) 
r(l - n /2 ) [8 (~ )  sin(qr/2) 

+ 8 ( - A )  sin(pr/2)]1A1 

c + r n / 2 - 1  

for n odd and p, 4 2 1, 

for p, 4 both even and 3 2 ,  

(9c) 

( 9 4  

d 2 - 1  

c + ( r n / z / r ( n / 2 ) ) [ ( - 1 ) q ~ z e ( A )  + (-1)p/2e(-A )IlA 

c + ( - 1 ) ( 3 P + q ) / 4  (~"/~- ' /r(n/2))[1nlA I - (l(n/2)]IA I n / ' - '  

c + ( - 1 ) ( P - 1 ) / 2  (rn/2-1/r(n/2))[~(n/2) - 1nIA /]/A l n / 2 - 1  
for p, 4 both odd and n = 2 , 6 , 1 0 , ,  . . , (9e) 

for p, 4 both odd and n = 4,8,12, . . . . (9f) 

Here, r denotes the gamma function, (l the psi function (Gradshteyn and Ryzhik 
1980) and 8 is the unit step function. 

In (9c)-(9f), C is an arbitrary positive constant which appears in virtue of the 
unbounded support of the delta function, i.e. the Fourier inversion integral must be 
appropriately regularised. Expressions for ZI for the normal forms Al,m-l  with m 3 2 
are easily obtained from equations (9) by first replacing A by A m  and then multiplying 
the A-dependent part of equations (9) by mlAl"-'. 

For the normal forms Am-l,o, Am-l,l  and Dm+l.O we obtain 

Zi(A)  = C + r"2-1T(-pl)AoJA lp 'c$ (A)  (1 = P + 4 )  (10) 

(11)  

In equation (lo), E = *1 (see table 1) and C = 0 if m is even and p = 0 or 4 = 0, 
otherwise C is arbitrary and positive as before. The amplitudes Ao, A+, A- are listed 
in table 2. The expression for Il for the normal form A2,2 is obtained from the 

where 
A + 8 ( E A )  + A  -e( - E A  ) for Am-1.0, Am-l,l, 

for D m + l , O .  ) = 1 A + 8 (A ) + A  - 8 (-A ) 
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Table2. The amplitudes Ao, A+, A- (equations (10). (11) ) .  Here, r = p + q  and a,, = 
cos(n/4m)-  E s in(n/4m).  

Ao m A+ A- 

Am-1.0 

Am-1.1 

Dmc1.0  

odd sin[ ( p  +A):] + s i n ( 3  

sin[ (i + p);] 

A+ 

sin( mp+q+2 z) 
m - 1  2 

+sin(--) p + m q n  
m - 1  2 

l + E  n 
sin 2 p + l + -  - 

am,= sin[ ( 2 p  + 1 + 
[( m )41 

expression for the normal form At,o by first replacing A by A' and then multiplying 
the second term in (10) by 21Al. Equation (10) is not valid for normal forms A m - l , ~  
if pi (see table 1) is a non-negative integer. In the latter case, (10) must be replaced 
by 

(12) 
A o( ?r "*-' /2p 1 ! ) cos(q?z/2)lh l p l  (Pi odd) 
Ao(?rr /2 - ' /p l ! )  sin(q?r/2)[ln)A I -$(PI + l ) ] A p l  (PI even) 

I ~ ( A )  = c + { 
for m even, and 

for m odd. In equation (13), a = E (a = -1) if p1 is even (odd). 
Turning to It and putting n = 1, the integral in (76) reduces to 

It((, A )  = 1 [e(-&GoAGox) exp(-W)/GoxI,, (14) 
i 

where Go is one of the singularities of table 1 with corank G o s  1 and GOA (Gox) is 
the derivative of Go with respect to A (X). The index j after the second bracket in 
(14) denotes that GOA and Gox have to be evaluated at the jth solution Xi(A) of the 
equation Go(X, A )  = 0 and the sum is taken over all Xi(A). The expressions for I&, A )  
for the normal forms Am-l,o and are: 

Al.m-1: 

% e ( ( A )  exp(-i(IA 1'"') - @ ( - ( A )  exp(i(1A lm/2)]1A (15a) 

0 ( m  even, E = l) ,  (15b) 
$ E [ @ ( - & ( )  exp(-i(/A 1'"') - e(&() exp(i6lA l m ' 2 ] ] O ( - ~ A ) l A  ( m  odd); (15c) 

(m even, E = -1), 
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The evaluation of I2 for Am-',' is more subtle than for the other normal forms, 
because the equation Go(X, A )  = 0 has always X = 0 as a solution and GOA (0, A )  = 0, 
so that the step function in (14) is not properly defined. To avoid this difficulty, we 
consider the (perturbed) equation 

X" + EXA +a = 0, f f € R  (18) 
and define sgn G&(O, A )  to be the sign of that solution of equation (18) which goes 
into the trivial solution X=O for a+fO. Looking at the bifurcation diagrams 
associated with (18) (see Golubitsky and Schaeffer 1979), one infers immediately that 

(19) 
Now define 12' (6, A )  by equation (14) with GoA(0, A )  replaced by sgn G&(O, A )  (since 
only the sign of the argument of a 6 function is relevant) to obtain 

I: (6, A )  = Ee(f6)A-'  + (l/m)[e(&b) exp(i6lA ll ' (m- l ) )  
+ e(-&() exp(-i& I"cm-l))]e(-&A)lAI-l 

sgn G&(O, A )  = --E sgn ( * A ) .  

(m odd), 

The author wants to express his sincere gratitude to Dr F J Wright for valuable 
comments and to Professors W Guttinger and D Armbruster for stimulating dis- 
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